

International Interdisciplinary Congress on Renewable Energies, Industrial Maintenance, Mechatronics and Informatics Booklets

RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - Google Scholar DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

Title: Direct design process of aerodynamic profiles using the Joukowsky transformation

Authors: ROMERO-GÓMEZ, Gabriel and LÓPEZ-GARZA, Víctor

Editorial label ECORFAN: 607-8695 BCIERMMI Control Number: 2021-01 BCIERMMI Classification (2021): 271021-0001		RN	A: 03-2010-(Pages: 14 032610115700-14	
ECORFAN-México, S.C.		Holdings			
143 – 50 Itzopan Street		Mexico	Colombia	Guatemala	
La Florida, Ecatepec Municipality		Polivia		Democratic	
Mexico State, 55120 Zipcode	www.ecorfan.org	DOIIVIA	Cameroon	Democratic	
Phone: +52 55 6 59 2296		Spain	El Salvador	Republic	
Skype: ecorfan-mexico.s.c.		- P			
E-mail: contacto@ecorfan.org		Ecuador	Taiwan	of Congo	
Facebook: ECORFAN-México S. C.		D			
Twitter: @EcorfanC		Peru	Paraguay	Nicaragua	

Introducción

La hipótesis es: El perfil aerodinámico, perfil de alar, o "airfoil" en inglés, es Los perfiles pueden desarrollar un trazo cuyo contorno es mejores coeficientes de sustentación similar a la geometría de gota y arrastre introduciendo en estos una de agua. Además, dicha curvatura adecuada en la geometría geometría permite al del perfil aerodinámico. cuerpo que lo posee, generar una distribución de presión tal que Es posible diseñar un cuando el perfil se somete a aerodinámico con pequeñas flujo de agua o aire la fuerza frontal y superficial, con perfil rontal y superficial, con una sustentación es mayor que la curvatura adecuada, capaz de generar fuerza. de resistencia que el una distribución de presiones que perfil genera. provoque una gran áreas aerodinámica, además, de producir un régimen de flujo laminar alrededor de él.

Metodología

- 1. Se obtuvieron los perfiles aerodinámicos mediante la transformación de Joukowsky.
- 2. Se analizaron los perfiles alares mediante la metodología desarrollada por Theodorsen.
- 3. Se seleccionaron perfiles aerodinámicos curvos con adecuadas distribuciones de presión.
- 4. Los perfiles aerodinámicos fueron estudiados en el software Qblade con la integración XFOIL/XFLR5.

Transformación de Joukowsky

Teorema de Kutta-JoukowskyEcuación de la circulaciónsustentación $L = \rho U_{\infty} \Gamma$ $\Gamma = 4\pi U_{\infty} aSen(\alpha \pm \beta)$ $CL = 2\pi Sen(\alpha \pm \beta)$

Metodología de Theodorsen

La matodología de Theodorsen propone de lizar ante processus la jovensa i y complejo anediante de las constançadas des portil flagos paplica datransferención conferratorial y i cr pormedia danssons plunto disarre alizana peól color dente sapolarado i líndricas de las distribuciones de presión.

Al correlacionar estos campos de trujos se puede selector ar una magnitud de la circulación para satisfacer la condición de Kutta, es de zin, la velocidad en el borde de salida de la sección debe alcanzar un cierto valor predefinido.

$$(2) \left(Sen((\psi)^{2})^{2} \psi(\psi)^{2} \psi(\psi)^{2} \psi(\psi)^{2} Sen^{2}(\theta) \right)$$

$$(3) Cosh(\psi) = \frac{x}{2aCos(\theta)} y Senh(\psi) = \frac{y}{2aSen(\theta)}$$

$$CP = 1 - \left[\frac{v}{U_{\infty}} \right]^{2} \qquad (6) \frac{d\epsilon}{d\theta} y \frac{d\psi}{d\theta} \int_{0}^{ls} \frac{Cp_{extrados-Cp_{intrados}}}{ls - li} dx$$

Análisis el software Qblade

Qblade es un software de cálculo de turbinas eólicas, la integración de la funcionalidad XFOIL/XFLR5 permite diseñar perfiles aerodinámicos personalizados y calcular sus polares de rendimiento, siendo esta razón una excelente herramienta para el objetivo de la investigación

Perfil R0.9BB60

1.5

Anexos

Perfil R0.9B5

Romit ROOPRESS				
	Ávraultadtaarne 205°			
Reymolds	Upper transition	Lower transition		
Reynolds	Upper transition	Lower transition		
1.5×10%6	<u> 22.70%</u>	150.30%		
1.3X10 0	51.7070	07.70%		
2×10/6	<u>46.20%</u>	150.50%		
2,5×10^6	15.50%	12070 8300%		
$\frac{2.5 \times 10^{\circ}}{2.5 \times 10^{\circ}}$	28.10%	63.30%		
3*10^6	<u> </u>	1200.120%		
<u> 3710 0</u>	21.1070	01.0070		
<u>5x10^6</u>	36880%	68.90%		
14111026	180008%	<u>6</u> 68.30%		
15x10^6	345.00%	QQ4.200%		
20x10^6	2235709%	BAD.(HD)%		

Perfil R0.95B5

Perfil R0.95B5A0					
Ángulo de ataque 9°					
D 11					
Revnolds	UBBEF Fransition	Lower transition			
Reynolds	Upper transition	Lower transition			
1. 5 x10^6	705.580%	1320.100%			
1.5x10^6	40.90%	100.00%			
2x10^6	7 84 50%	BOO 100%			
2210 0	51.0070	100.00 %			
2.3×18^8	<u>-71,320%</u>	100.00%			
2.5x10^6	24.40%	100.00%			
38 9/8	69-10%	100,00%			
<u>3x10^6</u>	19:80%	100.00%			
5x 10^6	60348%	100-00%			
$-5x10^{-6}$	10.80%	69.60%			
1131086	49288%	100,00%			
		41.2070			
15*10*6	44308%	100.00%			
30x 1046	<u> </u>	1400,4000/			
2011010	518 500%60	1LUX.3U%			

Perfil 0.85B10

Perfürrassisteda.				
	XÁDENIQUE ALQUER ⁸			
Reynoldis	Upper transition			
1.5×10%6	244809%			
1.5×10*0	51.90% 242500%	1000000		
2.5x1006	50.00%	1000000		
2.5×10*6 3×10%	<u>49.60%</u>	26.10% 1000000%		
<u>5x10%</u>		10000000		
10, 10, 10	43,220,00%	100000000		
1,5x,10%6	42320000000	1028.200%		
220x110*6	4 BSAUDAR	1050253550099%		

Perfil R0.87B10

I PROVER THE I PROVER THE I DOWNED STATES				
	Angullo de augue 59°			
Reynalds	Upper transition	ILeomer: (terms)itiom		
11.55x110*6	35123009%	BEASION		
2x110*6	456623000%	BERSHOOK		
2.581046	2000	BEEDE		
<u>3x10*6</u>	1385309% 6	BEERE		
5 x110^6	294000%	<u>BRAD</u>		
1100x1109*66	34494066	281.90%		
115x110%6	3 B3300% 6	2821.8309% 6		
220x11076	2 433300%	2192500966		

Perfil R0.9B10

	Perfil R0.9B10A6			
	Ángulo de ataque Be			
Reynolds	Upper transition	Lower transition		
1:5x10^6	ā‡:30%	17003009%		
2×10^6	50.90%	1600-800%		
<u>3</u> :5x10%6	<u>59:30%</u>			
<u>3x10</u> *6	3 8:20%	APC SOM		
5 *10^6	34 :90%	18840%		
10x10^6	\$\$660 %	<u>\$6.90%</u>		
15x10^6	48653004%	30280%		
20x10^6	-BREESKOPP%	39600%		

Perfil R0.92B10

Comparación de los resultados de los coeficientes de sustentación, en un ángulo idéntico a cero.							
-6O	<u>1</u>	2		3		4	5
-5 Nombre del	Cl ecuación	Cl del análisis		Cl del método		Ángitio de ataque	9 ∘ Dif. porcentual
] perfil		en el		de Theodorsen		de 1 con	de 3 con
-2		software		Reynolds		Upper transitiona 2.	Lowespeansition
-1		XFLR5, en		1.5x10^6		5\$ 80%	180.600%
0.0 0.2 0.2	0.4 0.6	ODiade		1,2410 0			
R0.9B5A0	0.54	0.56		0.73 2x10^6		3.57% \$7.00%	-30.35% 188130%
R0.9585A0	0.54	0.54		2.5x10/26		613.20% 0%	1142399
R0.85B10A	1.09	1.Q.S.Joids = 1 500 00		3x10.088		53.80%3 .8%	93.96%
		Mach = 0.000					
R0.87B10A0	1.09	NCrit = 9.000 Forcacij Cito rrans. = 1.000		5x10/62		39.80% 2.83	49,80% %
		Forced Lower Trans = 1.000		10 1011			
		Aipha - 3.00 deg Cl = 1.416		10x10^6		345.000%	E9.90%
Thickness = 8.78% R0.9B10A0	1.09	1.1 Cm = -0.236		0.88		0.9%	20%
Max. Thick.pos. = 24.49%		Cd = 0.017		16x10^6		57851509%	391.180%
Max. Camber = 8,82% Max. Camber pos. = 8,00%,92B10A0 Number of Panels = 99	1.09	1. U đeđ Trans. = 0.586 Lower Trans. = 0.395		0.68 20x10^6		1.8% 4 53:400%	38.73% 2002%

Conclusiones

5. Elempálifile pályinaljilet lyplandon elempéli a liphologi providenti provi providenti providenti providenti providenti providenti provident

Bibliografía

Carmona, A. I. (2000). Aerodinámica y actuaciones del avion. Madrid: Paraninfo.
Chattot, J., & Hafez, M. (2015). Theoretical and Applied Aerodynamics. New York: Springer.
Galindo, D. R. (2006). Diseño de perfiles aerodinámicos. Ciudad de México.
Gómez, G. A. (2021). Diseño de perfiles alares. Morelia.
H. Abbott, I., & Von Doenhoff, A. E. (1959). Theory of wing section. New York: McGraw-Hill.
John D. Anderson, J. (1991). FUNDAMENTALS OF AERODYNAMICS . Maryland: McGraw-Hill.
Katz, J., & Plotkin, A. (2010). Low-Speed Aerodynamics. New York: Cambridge University press.
McCormick, B. W. (1979). Aerodinamics, aeronautics, and flight mechanics. New York: Pennsylvania State University.
Tejada, L. A. (2020). Estudio de algunos perfiles aerodinámicos. Bogotá.
White, F. M. (2010). Mecánica de fluidos. McGraw-Hill.

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIERMMI is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/booklets)